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ABSTRACT 

 
Engaging private investors and entrepreneurs through public-private partnership (PPP) in 

constructing and operating transportation facilities has emerged as one of the viable options to 
meet the challenges of funding the development and maintenance of transportation systems. PPP 
developments lead to additional capacities without (directly) using public funding, faster delivery 
of projects, risk sharing with the private sector and more efficient operations and management of 
facilities. However, the profit-maximizing private sector may compromise public interests by, 
e.g., imposing higher toll rates or failing to offer high quality of service. A rigorous up-front 
analysis is needed to better protect public interests prior to entering into a PPP arrangement.  

 
This report considers the problem of selecting highway projects for the PPP development 

with the objective of improving the social benefit while ensuring the marketability of those 
selected. The problem has a structure of a tri-level leader-follower game and is formulated as a 
mixed integer program with equilibrium constraints. Without solving the associated problem, we 
show that optimal tolls and travel times on selected PPP highway projects can be determined 
from their attributes under mild assumptions. This leads to an efficient heuristic algorithm for 
solving the project selection problem. 
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EXECUTIVE SUMMARY 

 
The current approach to funding the development and maintenance of surface 

transportation systems is no longer able to address the serious challenges we face today. 
Engaging private investors and entrepreneurs through public-private partnership (PPP) in 
constructing and operating transportation facilities has emerged as one of the viable options to 
meet those challenges. PPP developments lead to additional capacities without (directly) using 
public funding, faster delivery of projects, risk sharing with the private sector and more efficient 
operations and management of facilities. However, the profit-maximizing private sector may 
compromise the public interests by, e.g., imposing higher toll rates or failing to offer high quality 
of service. A more rigorous up-front analysis is needed to better protect public interests prior to 
entering into a PPP arrangement. 

 
From a government's perspective, a PPP development process typically involves three 

stages. The first one is the project selection stage where the responsible governmental agency (or, 
more simply, the government) selects PPP projects that benefit society and are attractive to 
private firms at the same time. In the second stage, the government grants PPP concessions to 
private firms, typically those submitting the best bids at an auction. Finally, the government must 
negotiate the terms of contracts during the third stage to protect public interests during the 
concession period. 

 
The objective of this project is to provide a methodology to solve the first-stage problem, 

i.e., the PPP project selection problem. To our best knowledge, this is the first attempt to solve 
such a problem. The project selection problem can be viewed as a tri-level leader-follower game 
with three groups of players. The first group consists of a single player, the government, who is 
the leader in the game and makes decisions to which others must react. As the leader, the 
government selects, from a pool of candidates, projects for PPP developments to maximize the 
social benefit while ensuring the marketability of those selected. Specifically, the toll revenue 
from a marketable project should be enough to cover its construction, operation and maintenance 
costs during the concession period. The government will offer those selected projects for bidding 
at an auction. Of the remaining two groups, one consists of private firms who bid for (or react to) 
the PPP projects offered by the government. Finally, road users are the last group of followers 
who must choose the route and pay the necessary tolls to travel to their destinations. In other 
words, road users must react to private firms' decisions, ones that previously react to the project 
selection by the government. 

 
With some mild assumptions, this problem can be formulated as a mixed integer 

mathematical programming problem with equilibrium constraints, which is very difficult to solve 
mathematically. In order to efficiently solve this problem, we first analyze the private firms’ 
behavior under the PPP setting and find that tolls and link travel times for the candidate links for 
PPP developments can be pre-determined under assumptions common in the literature. Based on 
this finding, we develop a heuristic algorithm to solve the PPP project selection problem very 
effectively. Results from three different networks are provided in this report to validate the 
model and demonstrate the efficiency of the proposed algorithm. 
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1. BACKGROUND 

 
Financing the nation’s surface transportation infrastructure has never been more 

challenging than it is today (Rosenbloom, 2009). A weakening economy, the ever-improving 
fuel efficiency of vehicles and other factors have acted together to erode the funding sources for 
transportation systems. The Highway Trust Fund, the principal mechanism for providing federal 
funds for highway and transit programs, is soon to be bankrupt (GAO, 2009). Similar to the last 
year, its highway account balance was approaching zero in June 2009. Congress subsequently 
approved legislation in July 2009 to appropriate $7 billion from the General Fund of the 
Treasury to replenish the account. Given that it is politically unpopular to raise fuel tax rates, 
state and local governments have been struggling to find new alternatives for transportation 
financing to meet the growing demand for new transportation capacity.  

 
One alternative is to increase private sector participation in constructing and operating 

transportation facilities. Under this alternative, a private sector would enter into a public-private 
partnership (PPP) arrangement with a public agency and assume “a greater role in the planning, 
financing, design, construction, operation, and maintenance of a transportation facility compared 
to traditional procurement methods” (GAO, 2008). For example, the Florida Department of 
Transportation (FDOT) has recently executed a PPP contract with a private consortium headed 
by Spanish-owned ACS Infrastructure Development to design, build, finance, operate and 
maintain the $1.8 billion I-595 Corridor Improvements project (http://www.i-595.com). The 
concession period is 35 years and the financing includes a $603 million TIFIA loan, $750 million 
in private bank debt and over $200 million in private equity (Orski, 2009). It has been reported 
that around one-third of the Western European highway network is currently under concession, 
with most of them located in France, Spain, Italy and Portugal (Verhoef, 2007). Private toll roads 
have become a popular choice in Asia and South America as a way to add transportation 
capacities when governments have limited ability to finance road constructions (e.g., Tam, 
1999). 

 
Generally, PPP developments offer a variety of benefits, such as construction of new 

infrastructure without (directly) using public funding, faster delivery of projects, risk sharing 
with the private sector and more efficient operations and management of facilities. However, 
these benefits are not “free”. The profit-maximizing private sector may compromise the public 
interests by, e.g., imposing higher toll rates or failing to offer high quality of service. Moreover, 
the PPP agreements can be more costly to the public than traditional procurement methods. 
Therefore, it is necessary to conduct more rigorous up-front analysis to better protect public 
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interests prior to entering into a PPP arrangement. Unfortunately, no methodology for such 
analysis is readily available (GAO, 2008).  

 
There are three critical stages for a PPP development: (1) selection of a marketable PPP 

project, (2) determination of a private concessioner and (3) negotiation of a concession contract. 
Previous studies have investigated various auction mechanisms to select concessionaires for PPP 
projects to protect the public interest. Given a pre-determined concession period, Verhoef (2007) 
and Ubbels and Verhoef (2008) discussed the choice of capacity and toll by private investors in a 
competitive auction organized by the government. They compared various winner determination 
criteria, e.g., minimum toll charged for a pre-defined capacity, maximum capacity supplied, 
maximum patronage and minimum subsidy, and concluded that the criterion of maximum 
patronage replicates the second-best social optimum under a zero-profit constraint. On the other 
hand, Engel et al. (1997, 2001) pointed out that fixing the length of concession period in the 
actions does not generally yield optimal outcomes and it leads to the frequent contract 
renegotiations observed in practice. Instead, they suggested an alternative winner determination 
criterion, i.e., the least present value of revenue, which allows the concession length to be 
adjustable based on effective demand. Along the same line, Nombela and De Rus (2004) 
proposed another auction mechanism based on a flexible-term contract and bi-dimensional bids 
for total revenue and maintenance cost. Tan et al. (2010) analyzed the performance of a PPP 
contract, which specifies the concession period, capacity and toll charge, on private firm’s profit 
and the social welfare and concluded that any Pareto-efficient PPP contract requires that the 
concession period should be the whole life of the road. They also suggested that price-cap and 
rate-of-return regulations result in inefficient outcomes and both demand and markup charge 
regulations lead to Pareto-optimal outcomes. In summary, previous studies has primarily focused 
on determination of a private concessioner and negotiation of the PPP contract, i.e. the second 
and third stages of a PPP development, and . None or little has been done for the first stage. 
Moreover, the strategic interactions among multiple private firms have been largely ignored in 
the investigation of government regulatory regimes. 

 
This study fills this void by analyzing the first-stage problem, which we refer to herein as 

the project selection problem. More specifically, it is to select PPP projects from a pool of 
candidates accounting for their spatial interactions. The projects, once completed, should 
substantially improve the social benefit. However, they have to be marketable such that private 
firms will have an interest to bid. The project selection problem has a tri-level structure and 
mathematically very hard to solve. In order to efficiently solve the problem, we first analyze the 
private firms’ behaviors under the PPP developments. Based on the finding that the tolls and link 
travel times for private toll roads can be pre-determined under some common assumptions, an 
efficient heuristic algorithm is proposed to solve the project selection problem. For the remainder, 
Chapter 2 discusses the property associated with the private toll roads under PPP developments. 
Chapter 3 introduces the project selection problem and formulates the problem and develops an 
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efficient heuristic algorithm upon this property, which is demonstrated with numerical examples. 
Chapter 4 concludes the report. 
  



 
 

 4

 

2. CHOICE OF CAPACITY AND TOLL ON PRIVATE TOLL ROAD  

 
2.1 INTRODUCTION 

 
This chapter analyzes private provision of roads (e.g. under PPP development) in an 

oligopolistic market. It is assumed that in a general traffic network, some or all of the roads are 
built and then operated by individual private firms. Each private firm only controls one road. For 
a private road, the concession period is pre-determined to be the road life and the firm 
simultaneously decides the capacity to construct and the toll rate to charge given its belief on 
other firms’ choices in order to maximize profit. These private firms compete for the same travel 
demand of multiple origin–destination (OD) pairs and the underlying flow distribution is 
assumed to be in user equilibrium. Based on some other widely used assumptions, we prove that 
the level of service provided by a private firm on a particular road, represented by the volume–
capacity (v/c) ratio, is independent of another competitor’s choice of capacity and toll rate for 
another road, and is the same as the v/c ratio in the socially optimal provision of roads. We 
further prove the property still holds in a regulated market where the traffic authority regulates 
the generalized travel cost on a private road. 

 
The property of constant v/c ratio of private toll roads is discovered by Xiao et al. (2007) 

who studied both toll and capacity competition in a network with one OD pair connected by 
parallel links. Yang et al. (2009) observed the same property in their numerical example on a 
simple but more general network. Verhoef et al. (2010) also derived the same results in their 
analysis of second best network problems. This chapter provides a theoretical proof of the 
existence of the constant v/c ratio property over general traffic networks and on different 
conditions. Furthermore, a method is proposed to predict the toll and capacity choice of private 
toll roads under PPP developments.  

 
2.2 SIMULTANEOUS CHOICE OF CAPACITY AND TOLL UNDER NASH 
EQUILIBRIUM 

 
Consider a general traffic network ,  where  is the set of nodes and  the set 

of links in the network. Let  be the set of OD pairs and  the set of paths connecting all OD 
pairs. Let  denote the travel demand for OD pair ∈ ,  the flow on route ∈  and 

 the flow on link ∈ .  
 
It is assumed that there are multiple private toll roads in the network with each being 

controlled by one individual private firm. The firm simultaneously decides the road capacity to 
build and the toll charge to collect from road users. We denote the capacity and toll as  and 

 respectively for link ∈  where  is the set of private toll roads and ⊆ . We further 
assume that travelers will choose routes with the minimum generalized travel cost, which include 
travel time and toll charge. Consequently, the network flow distribution is in user equilibrium 
(e.g., Sheffi, 1985).  
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It is assumed that each firm attempts to choose both capacity and toll to maximize its 

profit and it can accurately predict the choices of other firms. Nash equilibrium will be achieved 
in such an oligopolistic market where no private firm is able to further increase its profit by 
unilaterally changing its choice on capacity or toll. In the following, we focus on the decision 
made by a private firm for a particular toll road, say link , in the network. The 
profit-maximizing choice of toll and capacity can be obtained by solving a bi-level optimization 
problem below: 

 

max
,

  

. . , 0 

where  is obtained by solving the following problem: 
 

min
,

 
,

∈

.
∈

 

. . ,					∀ ∈  

 

∈

,					∀ ∈  

 0, 				∀ ∈ , ∈  

 
In the above,  is the amortized cost for constructing and maintaining capacity ; 

 is the vector of link flows for OD pair ;  is the vector aggregate link flows; ,  is 
the travel cost function of link . It is assumed that the function is strictly increasing and convex 
with respect to , and is strictly decreasing and convex with respect to .  is the link-node 
incidence matrix.  is the “input-output” vector, i.e., a vector that has exactly two non-zero 
components, one with a value of 1 in the component corresponding to the origin node and the 
other with -1 in the component for the destination. 

 
The upper-level problem represents the private firm’s behavior, determining capacity and 

toll to maximize its profit, i.e., toll revenue minus the amortized construction and maintenance 
cost. The lower-level problem is a tolled user equilibrium problem where  and  for 
∈ ,  are the choices of capacity and toll by other private firms. The lower-level problem 

essentially defines an implicit reaction function ,  for the upper-level problem where  
and  are the vector of tolls and capacities respectively. We have the following assumption 
regarding the function:  
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Assumption 2-1. The reaction function ,  defined by the lower-level tolled user 
equilibrium problem is continuously differentiable with respect to generalized link travel costs.  

 
Lemma 2-1. If Assumption 2-1 holds, then the reaction function ,  satisfies the 

following: 
 

 
⁄
⁄

 

 
Proof.  
Denote the generalized cost of link ∈  as ̅ , . Note that the reaction 

function ,  can be more explicitly written as ̅ ,  where ̅ ,  is the vector of 
generalized travel cost of all links in the network, because the link flow  is indirectly affected 
by the choices of toll and capacity via the generalized costs. Differentiating the reaction function 
with respect to the capacity and toll of link  yields:  

 

 
̅

∈

.
̅

̅ .  (2-1)

 
̅

∈

.
̅

̅ . 1 (2-2)

 
The last equalities in the above two equations are due to the fact that for link ∈ , , 

̅ ̅
0. From (2-1) and (2-2), it is straightforward to obtain:  

 

 
⁄
⁄

 (2-3)

 
This completes the proof of the property. □ 
 
We now discuss the condition for Assumption 2-1 to hold based on the results from 

sensitivity analysis of traffic equilibrium (e.g., Tobin and Friesz, 1988; Yang and Bell, 2007). 
Readers who have no interest may skip this paragraph. Yang and Bell (2007) defined a path 
connecting an OD pair as an equilibrated path if the path is one of the minimum-cost paths 
connecting the OD pair. Given a path flow solution to the (tolled) user equilibrium problem, if 
there exists at least one equilibrated path on which the path flow cannot be strictly positive, the 
solution is said to be degenerate. Otherwise it is a non-degenerate or regular equilibrium point. 
Yang and Bell (2007) further proved that if the (tolled) user equilibrium problem admits at least 
one non-degenerate or regular path flow solution, then the equilibrium link flows are once 
differentiable with respect to generalized travel costs. More specifically, the existence of a 
non-degenerate path flow solution is a sufficient (but not a necessary) condition for the 
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differentiability of equilibrium link flows. Consequently, one can use the formula given by Tobin 
and Friesz (1988) and Yang and Bell (2007) to compute ⁄  and ⁄ , and 
subsequently prove Lemma 2-1.  

 
With Lemma 2-1, we now consider the choice of capacity and toll by one particular 

private firm under Nash equilibrium. Two additional assumptions are introduced as follows.  
 
Assumption 2-2. The travel cost function ,  for the private toll link of interest is 

homogeneous of degree zero with respect to link flow  and capacity . More specifically, 
, , , where  is any positive scalar. 

 
The above assumption is equivalent to assuming that the link travel cost only depends on 

the ⁄  ratio of the link. This is not a restrictive assumption, because, for example, the widely 
used BPR (Bureau of Public Roads) type functions satisfy it. With the assumption, the link cost 
function can be written as ⁄  (with a slight abuse of notation), leading to the following 
equations:  

 

 ⁄
⁄

.  (2-4)

 
Assumption 2-3. There are neutral scale economies in capacity provision, namely, 

. 1. More specifically, , where  is an amortized cost for constructing and 

maintaining one unit of capacity. 
 
Theorem 2-1. In a general network under Assumptions 2-1, 2-2 and 2-3, the /  ratio 

provided by a profit-maximizing firm on a particular private link will be independent of another 
competitor’s choice of capacity and toll for another link in the network.  

 
Proof. 
Consider the above bi-level program for the choice of capacity and toll by a 

profit-maximizing firm under Nash equilibrium. Using the implicit reaction function , , 
the profit-maximizing problem or PM can be simplified as follows:  

 
PM: 

max
,

 ,  

. . , 0 
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Since we are only interested in the situation where the capacity provided by the private 
firm is positive1, i.e., , 0, the corresponding first-order optimality condition is: 

 

 ,
,

0 (2-5)

 
,

 (2-6)

 
Eliminating  from the above two equations yields:  

 
,

,

,  

 
From Lemma 2-1, we have:  

 ,
,

 (2-7)

 
Combining (2-4) and (2-7) yields: 

 
⁄
⁄

 (2-8)

 
The left-hand side of (2-8) is a function of ⁄  and the right-hand side is a constant. 

Because ⁄  is strictly convex with respect to ⁄ , the /  ratio is uniquely 
determined by (2-8). The /  ratio provided for the link depends on its own travel cost function 

 and unit capacity cost . Therefore, for this specific road, the /  ratio will be constant 
and independent of another competitor’s choice of capacity and toll for another link in the 
network. □ 

 
2.3 SOCIALLY OPTIMAL CHOICE OF CAPACITY AND TOLL 

 
The social optimum condition of the network is the one where the determination of 

capacities and tolls are centrally planned to maximize total social welfare. The objective is 
equivalent to minimizing total system travel cost plus the total cost for capacity provision. With 
previous assumptions, the condition can be obtained by solving the following convex system 
optimum or SO problem:  

 

                                                 
1  There may be two distinct cases where the capacity provided by the private firm is zero. One is that the road is 
not profitable and the firm decides not to build it. The other is that the firm is a monopolist and the travel demand of 
the OD pair is fixed. In this situation, theoretically the firm can provide a road with (near) zero capacity and charge 
users an infinite amount of toll. If the demand is elastic or there exist other alternative roads connecting the same 
OD pair, this case will not happen.  
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SO:  
 

min
,

 ,
∈ ∈

 

. . ,					∀ ∈  

 

∈

,					∀ ∈  

 0, 				∀ ∈ , ∈  

 0, ∀ ∈  

 
By examining the first-order optimality condition of the above problem, it is easy to 

establish that the social optimal choice of toll charge is the so-called marginal-cost pricing toll, 

i.e., 
,

 where the superscript SO indicates the solution to the SO problem. 

For a particular link  with strictly positive capacity, we have the following:  

 
,

0 (2-9)

 
Theorem 2-2. In a general network under Assumptions 2-1, 2-2 and 2-3, the socially 

optimal provision of /  ratio on one particular link is equal to the /  ratio provided by a 
profit-maximizing private firm. 

 
Proof. 
Substituting (2-4) into (2-9) yields:  

 
⁄
⁄

 (2-10)

 
Equation (2-10) is exactly the same as Equation (2-8) in the proof of Theorem 2-1. 

Therefore, we conclude that the /  ratio under the social optimum condition is the same as the 
/  ratio provided by a profit-maximizing private firm. □ 

 
Theorem 2-2 requires that all links in the network are optimally tolled. It is worth noting 

that the theorem still holds for one particular link even if the capacities of other links in the 
network are not chosen optimally. To see this, assuming that the capacities of other links are 
fixed to certain (not necessarily optimal) values, the objective function of the SO model changes 
to:  
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min
,

 ,
∈

 

where link  is the link of interest. Examining the optimality condition of the restricted 
SO problem, we still obtain (2-9) and thus Theorem 2-2.  

 
As the /  ratio of a road represents the level of service offered on the road, Theorem 

2-2 implies that a profit-maximizing private firm will be able to provide the same level of service, 
i.e., the same quality of product to the traveling public as a welfare-maximizing centralized 
traffic authority does. However, the prices charged for the same level of service will be different. 
Below is the price charged by the profit-maximizing firm, obtained by substituting (2-7) into 
(2-6), and then applying (2-4):  

 

 
, , 1

 

where  is the elasticity of the demand (flow) for link  with respect to the capacity 
provided at the link and the superscript PM indicates the solution to the profit maximization 
problem or PM in Section 2.2. 

 
2.4 SIMULTANEOUS CHOICE OF CAPACITY AND TOLL IN A REGULATED 
MARKET 

 
The above discussion has been focused on unregulated markets. To protect the public 

interests, government agencies may regulate the market of private road provision by setting up 
additional requirements, e.g., the ceiling for toll level, minimum traffic flow and maximum travel 
cost (e.g., Tsai and Chu, 2003; Ubbels and Verhoef, 2008 and Tan et al., 2010). In this section, 
we examine the choice of capacity and toll by a profit-maximizing firm in an oligopolistic 
market regulated by an upper bound on the generalized travel cost of the private toll road. The 
regulation is proposed from the perspective of protecting individual travelers. The regulation will 
ensure travelers’ travel costs on the private road less than or equal to an upper bound. We prove 
that such a regulation will not affect the level of service, i.e., the v/c ratio, provided by the 
private firm.  

 
The regulation can be represented as: 

 ̂  (2-11)

 
Theorem 2-3. In a general network under Assumptions 2-1, 2-2 and 2-3, if the upper 

bound of generalized travel cost on one particular private link is large enough such that the 
choice of capacity is still strictly positive, the /  ratio provided by the profit-maximizing firm 
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will be the same as the one in the unregulated market.  
 
Proof. 
With a strictly positive choice of capacity (and thus toll), the first-order condition of the 

profit maximization problem, i.e., PM in Section 2.2, with one additional constraint (2-11) is: 
 

 ,
,

0 (2-12)

 
,

0 (2-13)

where  is the multiplier associated with constraint (2-11). 
 
From (2-13), we have: 

 

,  (2-14)

 
Substituting (2-14) into (2-12) yields: 

 
, , .

,
0 (2-15)

 
Applying the result from Lemma 2-1, we arrive at:  

  (2-16)

 
Substituting (2-4) into (2-16), we will once again obtain:  

 
⁄
⁄

 

which is the same as (2-8) and (2-10) in the proof of Theorems 2-1 and 2-2 respectively. 
We thus complete the proof. □ 

 
An intuitive explanation for Theorem 2-3 is that when the constraint of the generalized 

cost is active, profit maximization still entails minimization of the sum of the capacity cost and 
travel time experienced by users since this allows the firm to charge the highest possible toll for 
the given demand. Note that minimization of the sum of travel time and capacity cost coincides 
with welfare maximization. Thus, the /  ratio provided by the private firm will be the one in 
the social optimum, i.e., the one in the unregulated market.  

 
The above theorem implies that the regulation does not impact the level of service 

provided, thus the travel time experienced by the travelers. The regulation essentially sets up a 
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ceiling for the toll level. However, interestingly, if the toll level is directly regulated, i.e.,  

 ̂  (2-17)

the /  ratio will become larger if the above constraint is active, as demonstrated below. 
With a strictly positive choice of capacity and toll, the first-order optimality condition of PM 
with one additional constraint (2-17) includes:  

 

 ,
,

0 (2-18)

 
,

0 (2-19)

where  is the multiplier associated with constraint (2-17). 
 
Eliminating  from (2-18) and (2-19) yields:  

 , , .
,

0 (2-20)

 
Substituting (2-3) and (2-4) into (2-20) leads to:  

 
⁄
⁄

.
⁄
⁄

 (2-21)

 
The second term in the right-hand side of (2-21) is strictly positive if constraint (2-17) is 

active. Since the left-hand side is monotonically increasing, the resulting /  will be larger than 
the level in the situations we have discussed so far. This implies that the regulation of price cap 
may decrease the quality of service provided by the private firm. 

 
2.5 SECOND-BEST CHOICE OF CAPACITY AND TOLL WITH REVENUE NEUTRAL 
CONSTRAINT 

 
Section 2.3 describes the socially optimal choice of capacities and tolls of toll roads. The 

choice can improve the total social benefit in an optimal way. However, the choice does not 
guarantee that the toll revenue generated from a toll road is able to cover the construction and 
maintenance cost of the road, which eventually make the toll road unsustainable. It makes more 
practical sense to seek for a second-best choice of capacities and tolls of the toll roads to ensure 
that each toll road can generate enough toll revenue to pay off its cost. In this section, we discuss 
a model for the second-best capacity and toll choice where toll roads in the network are required 
to be revenue neutral. 

 
The second-best system optimal problem can be formulated as the following bi-level 

problem: 
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min
,

 ,
∈

∈
 

. . , ∀ ∈  (2-22)

 , 0 (2-23)

where  is obtained by solving the following problem: 
 

min
,

 
,

∈

.
∈

 

. . ,					∀ ∈  

 

∈

,					∀ ∈  

 0, 				∀ ∈ , ∈  

 
Using the implicit reaction function ,  defined by the lower-level problem for each 

link  in the network, the above problem can be rewritten as a single-level problem: 
 
SSO: 

min
,

 , , ,
∈

∈
 

. . (2-22) and (2-23) 

 
Now, we extend Assumption 2-1 and Lemma 2-1 to consider all the links in the network. 
 
Assumption 2-4. The reaction function ,  for any link  defined by the 

lower-level tolled user equilibrium problem is continuously differentiable with respect to 
generalized link travel costs.  

 
Lemma 2-2. If Assumption 2-4 holds, then the reaction function ,  satisfies the 

following: 
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 ⁄
⁄

, ∀ ∈  (2-24)

where link a is a private toll road.  
 
Proof.  
The proof is similar to the proof of Lemma 2-1.□ 
 
Theorem 2-4. In a general network under Assumptions 2-2, 2-3 and 2-4, for a toll road , 

if the constraint 0 is non-binding at an optimal solution to SSO and the multipliers 
associated with (2-22), , does not equal -12, then the /  ratio provided by the toll road 
under the second-best social optimal condition with revenue neutral constraint will be the same 
as first-best social optimal condition, and also the same as the one provided by the private 
profit-maximizing firm in the unregulated market. 

 
Proof. 
Consider the toll road . Because 0 is non-binding, it is straightforward to obtain 

from constraint (2-22) that 0. Then the first-order optimality conditions for SSO reduce to 
the following: 

 

 

∈

,
,

∈ ∈

0 (2-25)

 

∈

,
,

∈

,

∈

0 

(2-26)

 
Combining (2-24), (2-25) and (2-26) yields: 

 
,

0 

 
After rearranging the terms on the left and using the assumption that 1, we have 

the following: 

 ,
1 0 

                                                 
2 See Appendix A for discussions on the situation when 1. 



 
 

 15

 
,

0 (2-27)

 
From Assumption 2-2 and (2-4), the above is equivalent to: 

 
⁄
⁄

 

which is the same as (2-8) and (2-10) in the proof of Theorems 2-1 and 2-2 respectively. 
We thus complete the proof. □ 

 
Theorem 2-4 is a very useful result, especially for the PPP project selection problem 

described in Chapter 3. It provides a way to directly determine the /  ratio of a toll road 
without solving the capacity and toll optimization problem. 
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3. OPTIMAL SELECTION OF PPP PROJECTS ON TRANSPORTATION 

NETWORKS 

 
3.1 PROBLEM DESCRIPTION 

 
In this chapter, we focus on formulating the first-stage decision in the PPP development 

as described in Chapter 1, i.e., how to select highway links in a transportation network for PPP 
developments in order to maximize the social benefit. 

 
We view the project selection problem as a tri-level leader-follower game with three 

groups of players. The first group consists of a single player, the government, who is the leader 
in the game and makes decisions to which others must react. As the leader, the government 
selects, from a pool of candidates, projects for PPP developments to maximize the social benefit 
while ensuring the marketability of those selected. Specifically, the toll revenue from a 
marketable project should be enough to cover its construction, operation and maintenance costs 
during the concession period. The government will offer those selected projects for bidding at an 
auction. Our formulation in the next section assumes that the concession period is 
pre-determined and bids are in terms of, e.g., the capacity of and the toll rate for the highway to 
be constructed. Of the remaining two groups, one consists of private firms who bid for (or react 
to) the PPP projects offered by the government. Finally, road users are the last group of followers 
who must choose the route and pay the necessary tolls to travel to their destinations. In other 
words, road users must react to private firms' decisions, ones that previously react to the project 
selection by the government.  

 
Our formulation in the next section is an optimization problem whose solution identifies 

projects selected for PPP developments (i.e., to be offered at an auction). To make the problem 
tractable, the formulation relies on several assumptions that are mild and common in the 
literature (see, e.g. as Verhoef, 2007; Ubbels and Verhoef, 2008). It is assumed that there are a 
sufficient number of private firms interested in bidding for the PPP projects and thus the auction 
is under a perfect competition. Consequently, concessioners with the winning bids will receive, 
theoretically, a zero profit. We further assume that the auction mechanism is well designed so 
that the winning bids replicate the second-best social optimum under the zero-profit constraint. 
For road users, we assume that they always switch to a route with a lower generalized cost when 
one exists. Thus, the social benefit in our formulation is calculated based on traffic flows that are 
in Wardropian user equilibrium. 

 
To describe the action of road users, let ,  be a directed network where  and 

 are the set of nodes and directed links, respectively. For the latter, let  represent the set of 
candidate links for PPP developments and ⊆ . Each link ∈  has an associated travel time 
function, , , that depends on link flow  and capacity . For link ∈ , the 
capacity is given while for those in , their capacities will be decision variables. We assume that 
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,  is differentiable and monotonically increasing with respect to  and decreasing with 
respect to . The set of OD pairs is denoted as  and  represents the demand for OD pair 
∈ , which is assumed to be fixed. To satisfy demands, the variable  denotes the flow on 

link  for OD pair  and  is an aggregation of . Then, the set of all feasible flow 
distributions for the network, denoted as Φ, can be described as follows: 

 

 ,					∀ ∈ , (3-1)

 

∈

,					∀ ∈ , (3-2)

 ,					∀ ∈ , (3-3)

 0, 				∀ ∈ , ∈ , (3-4)

where  is the link-node incidence matrix and  is the “input-output” vector, i.e., a vector 
that has exactly two non-zero components, one with a value of 1 in the component corresponding 
to the origin node and the other with -1 in the component for the destination. Constraint (3-1) 
ensures that flows emanating from and terminating at every node are balanced. Constraint (3-2) 
computes the aggregate flow  from individual flow . As stated above, Φ depends on , 
a binary variable representing the decision whether to select a candidate link ∈  for PPP 
development. Specifically, 1 indicates that  is selected and 0 says otherwise. In 
addition,  is a sufficiently large number to allow a flow on link ∈  when 1. 

 
As assumed earlier, the government selects projects to maximize the social benefit. 

Because the travel demand is constant, maximizing the social benefit is equivalent to minimizing 
the system cost or the sum of the total travel time (into monetary units) and the cost of building 
and maintaining the PPP projects. Then, the project selection problem (PSP) can be formulated 
as follows: 

 
PSP: 

min
, , ,

 ,
∈∈

 

. . ,
∈ ∈

0, ∀ ∈ Φ (3-5)

 , ∀ ∈  (3-6)
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∈

 (3-7)

 0,1 , ∀ ∈  (3-8)

 , 0, ∀ ∈  (3-9)

 ∈ Φ 

 
In the above,  is the amortized cost for providing and maintaining capacity  on 

link ,  is the toll rate charged on a PPP link  and the parameter  is the maximum number 
of links that can be selected for PPP developments. 

 
The objective function of PSP is to minimize the system cost as defined previously. 

Constraint (3-5) is a variational inequality and ensures that  satisfies the equilibrium 
conditions with tolls  and capacities  (Patriksson, 1994). Constraint (3-6) is the zero-profit 
condition under perfect competition. Constraint (3-7) limits the total number of selected PPP 
projects to . Constraints (3-8) and (3-9) force the selection variables to be binary and the 
associated tolls and capacities to be nonnegative. 

 
As formulated, PSP is a mathematical program with equilibrium constraints (MPEC) that 

contains integer decision variables. In optimization, MPEC is a class of problems difficult to 
solve because its feasible region is non-convex and none of its feasible solution satisfies the 
Magasarian-Fromovitz constraint qualification (see, e.g., Chen and Florian, 1995; Scheel and 
Scholtes, 2000). Moreover, the presence of binary variables makes PSP more complex than 
MPEC with only continuous variables. 

 
The next section discusses the properties of a problem that is related and useful in 

developing algorithms for solving PSP. Specifically, we separate the decision variables of PSP 
and examine a reduced problem where the candidate links have been selected. Given a selection 
of PPP projects, i.e. given the value of , PSP reduces to a problem that determines the capacity 
and toll rate for each PPP link and evaluates the system cost associated with the selection. More 
specifically, it is a sub problem of PSP that only considers the behavior of the private toll road 
and road users. Below, we refer to this sub-problem as the system cost evaluation problem or 
SCEP. 

 
3.2 PROPERTIES OF THE SYSTEM COST EVALUATION PROBLEM 

 
Given the government's selection of candidate PPP projects to put up for bids at an 

auction, the cost associated with such action can be determined by solving the System Cost 
Evaluation Problem as formulated below: 
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SCEP: 

min
, ,

 ,
∈ ∈

 

. . ,
∈ ∈

0, ∀ ∈ Φ (3-10)

 , ∀ ∈  (3-11)

 , 0, ∀ ∈  (3-12)

 ∈ Φ 

 
In the above,  represents the set of PPP projects selected for the auction and ⊆ . In 

terms of PSP, 1, ∀ ∈ . 
 
As formulated, SCEP is another MPEC with a structure similar to a continuous network 

design problem, an extensively studied problem in the literature. Algorithms proposed for the 
design problem include the sensitivity- analysis-based algorithm (Friesz et al., 1990), the pattern 
search method (Abdulaal and LeBlanc, 1979), the gap-function-based approach (Meng et al., 
2001), meta-heuristics (Yin, 2000) and relaxation method (Ban et al., 2006). See Yang and Bell 
(1998) for a more extensive review. 

 
Note that SCEP is essentially the same problem as discussed in Section 2.5 where the toll 

road capacities and tolls are chosen to maximize the social benefit subject to the revenue neutral 
constraint. Thus, Theorem 2-4 is applicable to SCEP, i.e., the /  ratio of each toll link can be 
predetermined. We further show below that the travel time and the toll charge can also be 
pre-determined. Base on this result, the optimal solution to SCEP can be obtained by solving a 
convex optimization problem to be formulated. 

 
Corollary 3-1. Under the same assumptions as Theorem 2-4, the travel time on link 

∈  can be pre-determined. 
 
Proof. Because the link travel time only depends on the ⁄  ratio, the corollary follows 

immediately from Theorem 2-4.□ 
 
Corollary 3-2. Under the same assumptions as Theorem 2-4, the toll on link ∈  must 

equal its marginal external cost and can be pre-determined. 
 
Proof. From (2-27), for toll link  

 
,

0 (3-13)
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Multiplying  to both sides of (3-13) and applying Assumption 2-2 yield: 

 ,
 (3-14)

 
Comparing (3-14) to (3-11), it follows that 

 
,

 

 
From the zero-profit constraint (3-11), we have: 

 ⁄
 

 
Because the ⁄  ratio is constant, the above  is also constant and depends only on 

the attributes of the link itself. □ 
 
Although the tolls in Corollary 3-2 are in the form of marginal-cost tolls, they are not 

necessarily first-best (e.g. Button, 1993) because not allowing tolls on links not in  effectively 
makes the solution to SCEP second-best. 

 
Given the above corollaries, we show below that the optimal solutions to SCEP can be 

constructed, under some conditions, from the solutions to a convex nonlinear program. A similar 
idea is presented in Verhoef et al. (2010) without proof. 

 
Let  and  be the pre-determined optimal link travel time and toll for ∈  

according to Corollaries 3-1 and 3-2. Then, the following problem (the tolled user equilibrium 
problem or TUEP) determines the equilibrium flow when tolls are present: 

 
TUEP: 

min 

∈ ∈ ∈

 

. . ∈ Φ 

 
Given ∗, an optimal solution to TUEP, we construct a triplet ∗, ∗, ̅  by setting 

∗ ∗⁄ , ∀ ∈ , where  is the optimal ⁄  ratio according to Theorem 2-4, and ∗ 0, 
∀ ∈ . Because the solution to TUEP may not be unique, Lemma 3-1 below states that all 
the triplets constructed from solving TUEP yield the same system cost. Lemma 3-2 further states 
that ∗, ∗, ̅  is feasible to SCEP. Theorem 3-1 then shows that the triplet is optimal to SCEP 
under some conditions. 
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Lemma 3-1. When TUEP admits multiple optimal solutions, all the triplets constructed 
as above must yield the same system cost. 

 
Proof. Assume that ∗ and ′ are two optimal solutions to TUEP, and two triplets, i.e., 

∗, ∗, ̅  and , , ̅ , can be constructed accordingly. It follows from the Theorem 2.5 of 
Patriksson (1994) that the optimal link travel times from TUEP are unique. Because ,  is 
assumed to be strictly increasing with respect to  for all ∈ , the optimal link flows for 
these links are also unique, i.e., ∗ , ∀ ∈ . Consequently, 

 
∗

∈ ∈

 

 
Because ∗ and ′ yield the same objective value of TUEP, we then have 

 

∈

∗

∈

∗

∈ ∈

 

 
Consequently, 

 ∗

∈

∗

∈

∗

∈

∗

∈ ∈ ∈

 

 
Thus the two triplets yield the same system cost.□ 
 
Lemma 3-2. ∗, ∗, ̅  is feasible to SCEP. 
 
Proof. Because TUEP is essentially a tolled user equilibrium problem associated with ∗ 

and ̅, ∗ must satisfy (3-10) in SCEP. 
By construction, ∗, ̅  also satisfies the zero-profit constraint (3-11). Thus, ∗, ∗, ̅  

is feasible to SCEP.□ 
 
Theorem 3-1. If there exists an optimal solution to SCEP in which 0, ∀ ∈ , then 

∗, ∗, ̅  solves SCEP. 
 
Proof. To obtain a contradiction, assume that ∗, ∗, ̅  is not an optimal solution to 

SCEP. Let , ̂, ̂  be the optimal solution to SCEP and ̂ 0. From Theorem 4-2, it follows 
that , ̂  and ̂ , ∀ ∈ .  is the tolled user equilibrium flow distribution 
associated with ̅ and ̅, thus  solves TUEP. Also, Lemma 3-1 implies that ∗, ∗, ̅  and 
, ̂, ̂  must yield the same system cost. From Lemma 3-2, ∗, ∗, ̅  must be feasible to 

SCEP. Thus, ∗, ∗, ̅  is optimal to SCEP, which contradicts the earlier assumption. In other 
words, ∗, ∗, ̅  solves SCEP.□ 
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Theorem 3-1 suggests that if there exists a solution to SCEP with ∗ 0 for all ∈ , 
then the same solution can be obtained by solving the convex optimization problem TUEP. 
However, the converse may not hold. Specifically, the solution constructed from TUEP, i.e., 

∗, ∗, ̅ , may not be an optimal solution to SCEP even when ∗ 0. The following example 
demonstrates this situation. 

 
Consider a network in Figure 3-1 with four nodes and one OD pair, (1,4), with a demand 

of 4 units. The functions next to the links determine their travel times and the value of travel time, 
, is 1. The link (3, 2) is the only candidate for PPP development with an amortized cost 0.3 per 

unit capacity. 
 

 
Figure 3-1: Four-Node Network 

 
It is easy to verify that the network in Figure 3-1 satisfies Assumptions 2-2, 2-3 and 2-4. 

If the PPP link (3, 2) is chosen to be built, i.e., c 0 in the optimal solution to SCEP, its ⁄  
ratio and toll rate should be 1 and 0.3, respectively according to Theorem 2-4 and Corollary 3-2. 
With this information, we formulate TUEP, whose optimal solution leads to an optimal capacity 
of 4 units for link (3, 2) and the total system cost of 257.8. However, solving SCEP directly 
produces a total system cost of 212.0 and a zero capacity for the PPP link instead. 

 
The network in Figure 3-1 is an instance of Braess' Paradox (Braess et al., 2005). It 

demonstrates that if the optimal solution to SCEP requires some links not to be built (i.e., private 
firms have no interest in them), the solution from TUEP only provides an upper bound to SCEP. 
One way to obtain an exact solution is to enumerate the subset of the current selection (i.e., 
setting  from 1 to 0 for some ∈ ) and solve a series of TUEP. The solution with the 
minimum system cost will be the exact solution to SCEP. This process can be time consuming. 
The next section proposes an algorithm that avoids such an enumeration for computational 
efficiency. 

 
3.3 ALGORITHM 

 
This section presents a heuristic procedure for solving PSP. It is similar in spirit to the 
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active set algorithm proposed by Zhang et al. (2009) for the discrete network design problem. 
We attempted to apply the active set algorithm in a more direct way, but found that it is not as 
efficient as the one presented below. 

 
Given an initial selection of PPP projects, we solve SCEP to evaluate the selection. The 

procedure then estimates the marginal benefit of changing the status of each PPP candidate link 
from the current selection via a finite differencing scheme. Based on these marginal benefits, a 
knapsack problem is solved to find a plan for updating the current project selection that yields 
the most decrease in the system cost. The procedure continues until the system cost cannot be 
further reduced. 

 
Denote an initial selection of PPP candidate links as . Instead of solving SCEP directly, 

we determine the optimal travel times and tolls of those PPP links according to Corollaries 3-1 
and 3-2, and then formulate TUEP accordingly. Solving TUEP yields an optimal system cost, 

denoted as . Let  denote a vector of size | |whose element  equals 1 and the others 

are 0. The marginal benefit of changing the status of PPP project  is calculated as 

 via solving another TUEP with . The process repeats | | times 

until all the marginal benefits are obtained. 
 
The individual marginal benefits may not accurately predict the change in the system cost 

for two reasons: (a) the solution constructed from TUEP may not be the exact solution to SCEP, 
but provides an upper bound; (b) multiple variables in  can be changed simultaneously. 
However, they can be used as indicators of descent directions for the problem. A negative  
indicates that changing the value of  will reduce the system cost. However, doing so may 
make the new selection violate constraint (3-7). Therefore, we formulate the following knapsack 
problem to determine an improved update of the selection of PPP projects. 

 
KP: 

min 

∈

 

. . 

∈ ⁄ ∈

 (3-15)

 

∈

1
∈

1, ∀ 1,… ,  (3-16)
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 ∈ 0,1 , ∀ ∈  

where  is the total number of candidate links and  is a binary variable indicating whether 
to “flip” the selection decision of link . If 1,  is changed from 0 to 1 or from 1 to 0. If 

0,  is unchanged. The objective of KP is to maximize the reduction in the system cost by 
adjusting the current selection of PPP projects. A negative objective value suggests that the new 
selection decision may be able to reduce the system cost. Constraint (3-15) guarantees the 
adjusted selection remains feasible. The set  is the set of links with  equal to 1. 

 
Without (3-16), KP is the standard binary knapsack problem, a problem well-studied in 

the literature (e.g. Martello and Toth, 1990). Constraints (3-16) are the canonical cuts discussed 
by Balas and Jeroslow (1972). Each constraint cuts one solution away from the feasible region. 
Initially,  is set to be zero and the constraint set is empty. Solving KP generates an adjustment 
plan ∗ with the most negative change based on the individual marginal benefits . When an 
adjustment plan leads to a reduction in the system cost, it is used to update the current selection 
of projects. 

 
On the other hand, if the adjustment plan does not lead to a reduction in the system cost, 

the knapsack problem needs to be re-solved to find the next “best” plan. For this purpose, 
constraints (3-16) are introduced to prevent plans already examined from being feasible. 
Specifically, when an adjustment plan does not reduce the total system cost, the algorithm below 

sets 1, and ∈ : 1 , ∈ : 0 . In the next iteration of Step 

3b, constraint set (3-16) includes one more constraint that excludes the previous adjustment from 
the feasible region. In this manner, solving KP in successive iterations is guaranteed to generate 
a new adjustment plan. If no adjustment plan from KP can improve the system cost, the 
algorithm terminates. 

 
Below is a sketch of the proposed algorithm that contains the essential ideas, not the 

implementation details: 
 
1. Initialization 

Set 0, ∀ ∈ , formulate and solve TUEP and calculate the system cost . Set 
0. 

2. Calculate marginal benefits . 
3. Update the selection of PPP projects. 

a. Set 0. Set ∈ : 1 . 
b. Let  solve KP. If the optimal objective value is greater than or equal to zero, 

stop and return the current solution . Otherwise, go to Step 3c. 
c. Set 



 
 

 25

1, 

, ∈ : 0 , 

, ∈ : 1 , 
, ,					∀ ∈ , 
, ,					∀ ∈ . 

d. Formulate and solve TUEP using ,  and calculate the system cost , . If 
, , set , , , , 1 and go to Step 2. Otherwise, update 

KP and go to Step 3b. 
 

Theorem 3-2. The proposed heuristic algorithm terminates after a finite number of 
iterations. 

 
Proof. If the algorithm does not stop at Step 3b, the new selection b  obtained from 

Step 3d will lead to a better solution, i.e. z z , implying that the new selection is distinct. 
Because the number of possible selections is finite, the number of the outer iteration must be 
finite. 

 
For each inner iteration at Step 3b, the solution g is distinct because of (3-16). Since the 

total number of possible combinations of  is finite, the number of the inner iterations within an 
outer iteration must be finite. Thus the algorithm will terminate after a finite number of 
iterations.□ 

 
3.4 NUMERICAL EXAMPLES 

 
To illustrate its effectiveness, the algorithm in the previous section was implemented in 

GAMS (Brooke et al., 2005) with CONOPT (Drud, 1995) and CPLEX (IBM, 2009) as the solver 
for TUEP and KP, respectively. All the computations were on a Dell personal computer with a 
3.4GHz Intel CPU and 2GB RAM. 

 
Three networks (nine-node, Sioux Falls and Hull) from the literature are used in our 

experiment. The value of travel time is assumed to be one dollar per minute for all the three 
cases. The description of each network is given below. 

 
Nine-Node Network: This network is shown in Figure 3-2. It contains 9 nodes, 18 

existing links and 4 OD pairs. The pair of numbers next to each link are its free-low travel time 
and capacity. There are 18 candidate links for PPP developments and all are parallel to the 
existing ones. The free-flow travel time for each candidate link is the same as the existing link 
parallel to it. The amortized cost for one unit capacity is 0.5 and at most three links can be 
selected for PPP development, i.e., 3. 
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Figure 3-2: Nine-Node Network 

 
Sioux Falls Network: This network is shown in Figure 3-3. It consists of 24 nodes, 76 

existing links and 528 OD pairs. The OD demands are the ones reported in LeBlanc et al. (1975) 
multiplied by 0.09. There are 11 candidate links (shown in Figure 3-3 as dashed links) and their 
free-flow travel times are listed in Table 3-1. The amortized cost of one unit capacity of each link 
is 0.01 and 3. 

 
Table 3-1: Free-flow travel time of candidate links 

Link number 77 78 79 80 81 82 
Free flow travel time 1.2 1.8 2.4 2.4 1.2 2.4 
Link number 83 84 85 86 87  
Free flow travel time 2.4 1.2 2.4 1.8 1.8  
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Figure 3-3: Sioux Falls Network 

 
Hull Network: Because of its size, this network is not displayed and its topology is the 

same as the one in Florian et al. (1987). On the other hand, we modified link data to make it 
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more convenient for implementations. Specifically, fractional exponents of some travel time 
functions in Florian et al. (1987) are rounded to the nearest integers. The network has 798 links, 
501 nodes and 158 OD pairs. There are 50 candidate links and they are parallel to 50 most 
congested existing links in the network under the user equilibrium distribution. The travel time 
functions for the candidate links are the same as the existing parallel links. The unit capacity cost 
is assumed to be 0.05 multiplied by the free-flow travel time of each candidate link. Finally, we 
set s 5 because Hull is a larger network. 

 
Below are results for our experiments. Table 3-2 compares the solution quality and 

computation efficiency from TUEP against those from solving SCEP directly using the 
relaxation scheme in Ban et al. (2006). Although, both provide similar results, the execution time 
TUEP is less than 1% of the time required to solve SCEP by the relaxation scheme. This 
confirms that solving TUEP yields high quality solutions to SCEP while requiring much less 
computational time. 

 
Table 3-2: Comparison of different algorithms for solving SCEP 

  Relaxation TUEP 

Nine Node 
Total system cost 1959.88 1959.88 

Execution time (sec) 2.90 0.02 

Sioux Falls 
Total system cost 1885.78 1885.78 

Execution time (sec) 111.64 0.59 

Hull 
Total system cost 33877.05 33874.92 

Execution time (sec) 47199.77 104.97 
 
The proposed heuristic algorithm was then used to solve PSP for all three test networks. 

Table 3-3 compares the results with the ones obtained from enumerating all possible 
combinations. For nine-node and Sioux Falls, the heuristic algorithm provides solutions as good 
as or close to the optimal solutions obtained by enumerating all PPP development possibilities. 
At the same time, the algorithm requires solving a much smaller number of TUEP. For Hull, 
there are over two million possible combinations and it is too time-consuming to enumerate all 
PPP development possibilities. However, the heuristic algorithm still provides a solution that 
reduces the system cost by more than 23%, while requiring only 306 TUEP evaluations. 

 
Table 3-3: Results of test networks 

 Nine Node Sioux Falls Hull 
Original cost 4860.64 2067.12 51350.74 
 Heuristic Enum Heuristic Enum Heuristic Enum 
Optimal cost 2456.74 2456.74 1985.12 1984.76 39159.17 N/A 
Cost reduction (%) 49.5 49.5 4.0 4.0 23.7 N/A 
# TUEP solved 76 987 48 231 306 2369935 
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Table 3-4 reports the optimal PPP project selections and the corresponding capacities and 
tolls from the heuristic algorithm for the nine-node and Sioux Falls network. 

 
Table 3-4: Optimal PPP project selections 

Nine Node Sioux Falls 
Selected link Capacity Toll Selected link Capacity Toll 

(1,5) 34.2 1.25 79 29.6 1.62 
(2,5) 26.4 1.12 82 27.8 1.62 
(5,7) 99.6 1.04 85 27.5 1.62 
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4. CONCLUDING REMARKS 

 
This report focuses on the first-stage decision of the PPP project developments, i.e., the 

optimal selection of highway projects for PPP development from a pool of candidates to achieve 
highest social benefit while guaranteeing that the selected projects is self-sustainable and is able 
to attract private companies to participate in the roadway development.  

 
This report first analyzes the private companies’ behavior in deciding the toll road 

capacities and tolls in general transportation networks. It is found that under some mild 
assumptions commonly used in the literature, the v/c ratio provided by the toll road controlled 
by a profit-maximizing private company would be the same as the one provided by a central 
government that maximizing total social benefit. It is also shown the same property will still hold 
even if the private toll road is regulated by a cap of generalized travel cost. More importantly, the 
v/c ratio will be the same if the capacities and tolls are selected to achieve a second-best social 
optimal with revenue-neutral constraints. 

 
The report then formulates the PPP project selection problem as an MPEC with binary 

decision variables. The problem maximizes social benefit and can be viewed as a tri-level 
leader-follower game. As it is shown that tolls and link travel times for candidate links for PPP 
developments can be pre-determined under some mild assumptions, a heuristic algorithm is 
proposed to efficiently solve the selection problem. Results from three different networks 
validate the model and confirm the effectiveness and efficiency of the proposed algorithm 
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Appendix A. Situations When 1 in Theorem 2-4 
 
We now briefly discuss the condition when 1 in Theorem 2-4. If 1, the 

first-order conditions of SSO become: 
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0 (A.1)
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(A.2)

 
It is easy to verify that conditions (A.1) and (A.2) are the first-order conditions of the 

following mathematical program: 
 

min
,

 , , ,
∈

∈
 

. . (2-23) 

 
The above program minimizes the total user cost (travel cost and toll) without 

considering the cost for constructing new PPP links. If 1, the optimal solution to SCEP2 
is the optimal solution to the above problem. Because of the zero-profit constraint (2-22), the 
optimal objective values of the two problems are the same, i.e., the optimal total user cost is 
exactly the optimal system cost. In other words, when 1, the solution to the above 
program, a second-best choice of toll and capacity, is self-financing. 

 
However, such a situation is rare, because a second-best toll and capacity choice 

normally leads to a deficit under neural economies of scale (Verhoef, et al., 2010). If the 
construction cost is not a concern, the solution to the above program will likely lead to free-flow 
travel times and a zero toll on the private links. Because the construction cost cannot be 
recovered by the toll revenue, the total user cost is always lower than the system cost, i.e., the 
two objectives do not coincide. 
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